Økologi
Økologi (fra gresk: οἶκος, «hus», eller «miljø»; -λογία, «studiet av») er en gren av biologien som omhandler samvirket mellom organismer og deres biofysiske naturmiljø. Faget inkluderer biologisk mangfold, utbredelse, biomasse og populasjoner av organismer, så vel som samarbeid og konkurranse innen og mellom arter. Økosystemer er dynamiske systemer med interaksjon mellom organismer og samfunnet, samt med den livløse delen av miljøet. Prosesser i økosystemene, slik som primærproduksjon (plantevekst), næringskjeder (hvem spiser hvem) og nisjekonstruksjon (endring av miljøtilstanden), regulerer strømmen av energi og næringsstoffer gjennom dem.
Faget overlapper med nært beslektede vitenskaper som evolusjonsbiologi, genetikk og atferdsbiologi. Et viktig fokus for økologer er å øke forståelsen av hvordan biologisk mangfold påvirker økologiske funksjoner. Økologer prøver å forklare:
- Livsprosesser, interaksjoner og tilpasninger
- Strømmen av næringsstoffer og energi gjennom levende økosamfunn
- Suksesjonsutvikling av økosystemer (endringene i artssammensetningen over tid i et område)
- Utbredelse av organismer og biologisk mangfold i sammenheng med miljø
Økologi har praktiske anvendelser innenfor bevaringsbiologi, forvaltning av våtmarker, naturressurser, agroøkologi, jordbruk, skogbruk, skogslandbruk og fiskeri. Fagfeltet har også betydning innenfor byplanlegging (urban økologi) og menneskelig sosial samhandling (humanøkologi). Organismer (også mennesker) og ressurser utgjør økosystemer, som i sin tur opprettholder biofysiske tilbakekoblingsmekanismer. Disse styrer prosesser som virker på levende (biotiske) og ikke-levende (abiotiske) komponenter av jorden. Økosystemer opprettholder livsfunksjoner ved å produsere naturressurser som biomasse, som igjen gir mat, drivstoff, fiber og medisin. I tillegg til at de opprettholder økosystemtjenester som regulering av klima, globale biokjemiske kretsløp, vannfiltrering, jordformasjon, erosjonskontroll, flomsikring og mange andre naturlige funksjoner av vitenskapelige, historiske, økonomiske eller iboende verdier.
Oldtidens greske filosofer som Hippokrates og Aristoteles la grunnlaget for økologien i sine studier av naturhistorie. Moderne økologi ble en mer stringent vitenskap på slutten av 1800-tallet. Evolusjons-begreper knyttet til tilpasning og naturlig utvalg har blitt hjørnesteiner i moderne økologisk teori.
Begreper og vitenskapsgrener
redigerOrdet økologi stammer fra de to greske ordene oikos [οίκος], som betyr «hushold», og logos [λόγος], som betyr «læren om». Økologi er en gren av biologien, og dreier seg om samvirket mellom organismer og deres biofysiske miljø. Miljøet er både det biotiske, altså den levende delen som planter, fisker, dyr, bakterier og andre organismer og abiotiske, de ikke-levende delen som vann, luft, næringsstoffer, stein og energi fra sollys.[1]
Begrepet økologi
redigerØkologi har en meget omfattende definisjon, dermed er det også et studieområde som sammenfatter mange felter. Det er mange forskjellige relasjoner mellom organismer og miljøet omkring dem. Med organisme kan en mene et enkelt individ, grupper av individer, alle individer av en art, mange organismer eller den totale biomassen av organismer i et økosystem. I tillegg kan begrepet miljø forstås som ikke bare fysiske og kjemiske egenskaper med omgivelsene, men også det biologiske miljøet. Dermed omfatter begrepet miljø også andre organismer.[2]
Disipliner innenfor faget
redigerI praksis sier en at økologi er satt sammen av mange forskjellige fagområder som delvis overlapper hverandre. En måte å dele økologien inn i underkategorier er som følger:[2]
- Evolusjonær økologi – studerer miljøfaktorer som driver artens tilpasning,[2] med undertemaer som:
- Livshistorieteori – dreier seg om evolusjonen av organismenes livshistorier (tidspunktene for stadiene i livsløpet).[3]
- Atferdsbiologi – ser på hvordan økologiske faktorer påvirker organismers tilpasning via oppførsel.[2]
- Koevolusjon – omhandler arter som står nært økologisk slik at deres evolusjonære utvikling påvirkes gjensidig.[4]
- Autøkologi – studerer hvordan organismer tilpasser seg til sitt miljø,[2] toleransegrenser for faktorer som temperatur og fuktighet.[3]
- Populasjonsøkologi – studerer antallet individer av spesifikke arter i et område.[2]
- Biogeografi – studerer hvordan organismer er distribuert geografisk.[2]
- Samfunnsøkologi – økologien innenfor samfunn (økosystem), definert som gruppen av arter innenfor et spesielt sted.[2]
- Bevaringsbiologi – ser på forhold som kan lede til at arter dør ut, og hvordan dette kan forhindres.[2]
- Systemøkologi – studerer økosystemenes oppbygning og funksjon.[3]
De viktigste underdisiplinene til økologi er populasjonsøkologi og systemøkologi, som er to motsatte paradigmer innen feltet. Den første disiplinen har fokus på organismers distribusjon og mangfold, mens den siste fokuserer på materialer og energistrøm.[5]
Andre felter er makroøkologi, som er økologiske lovmessigheter på tvers av ulike økosystemer,[6] humanøkologi, som er effekten av andre organismer på mennesket, men også menneskets påvirkning av miljøet.[7] Videre har en landskapsøkologi som setter sammen system-, aut- og humanøkologi til en beskrivelse av prosessene som former et landskap.[8]
I tillegg har økologien tilknytninger til andre vitenskaper som blant annet samfunnsfag via bevaringsbiologi, evolusjonsbiologi via evolusjonær økologi og medisin via medisinsk økologi.[3]
Vitenskapen klassifiserer vanligvis stoff i et hierarki som spenner fra atomer til galakser. Innenfor økologien er en imidlertid opptatt av bare fem av disse nivåene, nemlig organismer, populasjoner, samfunn, økosystemer og biosfæren. Se egen illustrasjon.[9]
Evolusjonær økologi – naturhistorie og evolusjon
redigerEvolusjonær økologi undersøker miljøfaktorer som tvinger frem artstilpasning, altså at organismer endrer seg som en tilpassing til miljøet. Studier av artsutvikling ser etter genetiske endringer på populasjoner over flere generasjoner, men ikke nødvendigvis for å finne de underliggende mekanismene som ligger bak tilpasninger.[2] Organismer i en spesiell lokasjon (område) kan være påvirket av klima, jordsmonn, predatorer (dyr som spiser dyr) og konkurrenter. Evolusjon er endringer i for eksempel organismers oppbygning (morfologi), genetikk og atferd, og påvirkningen av slike faktorer kalles naturhistorie.[10]
Klima og jordsmonn avgjør biomenes geografiske distribusjon
redigerBiomer er jordens største økologiske enheter. De kjennetegnes av særpregede vegetasjonstyper, planter eller alger, og dyreliv som er tilpasset forholdene. Biomene på landjorden er bestemt ut fra klimaet, i første rekke temperatur og nedbør, men også jordsmonnet og høyde over havet.[11][12] Jordsmonnet er en blanding av levende og dødt materiale, samt mineraler og næringsstoffer. Sammensetningen og oppbyggingen av jordsmonnet kan være høyst forskjellig, og påvirker hva slags planter og organismer som trives.[13]
Biomer defineres generelt av gjennomsnittlig temperatur (på x-aksen) og nedbør (på y-aksen) for en geografisk lokasjon, se figur. Biomene er definert ut fra hvilke planter som vokser i dem. En årsak til dette er at plantene danner grunnlaget for livet på jorden. Plantetyper og diversitet (mangfold) i en region, vil være bestemt av klimaet og har avgjørende betydning for resten av økosystemet.[12]
Klimaet rundt om på jorden er høyst forskjellig og avgjøres hovedsakelig av at varmen jordoverflaten får fra solen er ujevnt fordelt og at jordaksen heller i forhold til jordens bane rundt solen. Det første gir klimaforhold som avhenger av breddegrad, mens jordhellingen gir årstider. Ved ekvator vil gjennomsnittlig temperatur være høy, og variere lite i løpet av året. Derimot kan regioner nær ekvator ha kraftig nedbør i deler av året.[12]
Oppvarmingen av jordoverflaten og atmosfæren fører til kraftige sirkulasjonsstrømmer. Spesielt ved ekvator er det sterke oppadgående, varme luftstrømmer som beveger seg mot nord og sør. Luftstrømmene omfatter hele jordkloden, og kalles atmosfærisk sirkulasjon. Fra ekvator mot nordpolen er det tre store sirkulasjonsceller, og tilsvarende fra ekvator mot sørpolen. Cellen ved ekvator kalles hadleycellen og gir fuktig og varmt klima, mens ferrelcellen ved midlere breddegrader gir tørt klima og polarcellen ved nord- og sørpolen kjennetegnes ved fuktig og kjølig klima.[14] I noen deler av verden har også havstrømmer betydning for klimaet på landjorden.[15]
Enda et forhold som former biomer på jordoverflaten, er fjellkjeder. Fjell bestemmer to viktige forhold som former biomer, hvorav den første er høyden over havet, som gir kjøligere klima jo høyere opp en kommer. For det andre har luftstrømmene som regel en dominerende retning. Dersom det kommer fuktig og varm luft fra havet inn mot et fjell, vil luften stige. Mens luften stiger kjøles den ned og dermed kan den ikke holde på så mye fuktighet, noe som gir nedbør. På lesiden av fjellet vil de avkjølte luftmassene bevege seg nedover. Lesiden av en fjellkjede får dermed tørt klima, kjent som regnskygge. Slike klimavariasjoner som fjellkjeder skaper kalles mikroklima.[13]
Biomer i vann
redigerHavet er sammenhengende over jordkloden.[16] Det er kartlagt rundt 250 000 arter i havet, og flere forventes å bli oppdaget. Biomer i vann deles først opp i enten fersk- eller saltvannssystemer. En rekke fysiske egenskaper med vann påvirker tilpasningen og fordelingen av levende organismer, som viskositet (motstanden det skaper mot bevegelse), tetthet, gjennomsiktighet, trykk, strømningshastighet, varmeledningsevne og varmekapasitet.[17]
På landjorden finnes oksygen tilgjengelig alle steder, men i vann er det begrensninger på hvor mye oksygen som kan løses opp. Oksygen er grunnleggende for nesten alle levende organismer, dermed er oksygen i vann en begrenset ressurs. Konsentrasjonen av oksygen i vann avhenger av omgivelsene, som igjen bestemmes av mengde sollys, temperatur, vannsirkulasjon, saltinnhold og oksygenbehovet til organismer med åndedrett.[17]
Omtrent 80 % av all solenergi som stråler ned i vannet, blir absorbert de første ti meterne. Som på landjorden er det organismer som omdanner sollys til energi ved fotosyntese. Disse er vannets primærprodusenter, og utgjøres av blant annet vannplanter, alger og blågrønnbakterier. En annen viktig effekt av sollyset er at det oppstår oppvarming av vannet, som i neste omgang setter i gang strømninger. Dermed blir blant annet energi, næringstoffer og oksygen transportert rundt i vannmassene både i innsjøer og i havet.[17]
Det finnes en rekke måter å inndele biomer i havet på, for eksempel hav, grunt vann med tareskog og koraller, strand, overgangsmiljøer (elvemunning, brakkvannsområder, mangroveskoger og våtmarker i ferskvann), elver og innsjøer.[18]
Omtrent halvparten av all fotosyntese på planeten skjer i havet. Diversitet, sammensetning og mengden av organiske organismer i havet er sterkt avhengig av fysiske og kjemiske forhold. Det grunne, øverste laget av havet hvor sollyset gjør seg gjeldende, kalles eufotisk sone. I denne regionen vokser planteplankton ved hjelp av sollys. Sammen med disse drifter dyreplankton som spiser planteplankton. Under den eufotiske sonen skjer det praktisk talt ingen fotosyntese.[16]
På grunt vann i kystområder med steingrunn vokser tareskog. Denne finnes ved kysten helt fra tempererte til subpolare områder, men ikke i tropene. Desto nærmere ekvator en kommer, desto mer tar korallrev over for tareskog. Korallrev og tareskog er blant de mest produktive og mangfoldige økosystemer som finnes. Korallrev kan ha større primærproduksjon enn selv tropisk regnskog.[19]
Evolusjon
redigerEvolusjon vil innenfor biologien bety en endring av den genetiske sammensetningen i en populasjon eller utvikling av nye organismer (for eksempel arter og slekter) over tid. Det første kalles mikroevolusjon og det siste makroevolusjon. Den engelske naturforskeren Charles Darwin foreslo som den første en mekanisme for evolusjon i boken Artenes opprinnelse. Han mente at naturlig utvalg er den viktigste mekanismen for evolusjon.[20] Det innebærer at visse genvarianter videreføres til neste generasjon i større antall enn andre varianter. Under konkurransen om begrensede ressurser, som føde og plass, vil noen individer ha visse fordeler. Årsaken til dette er at individer med fordelaktige genvarianter får frem flere avkom enn andre individer av samme organisme. Fordelene som disse individene har kan ha å gjøre med oppførsel eller fysiske egenskaper. Over lang tid med seleksjoner som miljøet bestemmer, vil bestander kunne endres.[21][22] Dermed kan ulike populasjoner av samme art som lever i områder med forskjellige levevilkår utvikle seg, over lang tid, til å bli forskjellige arter, hver av dem tilpasset ulike miljøforhold.[23]
Darwin innså at hans teori ikke var helt tilstrekkelig. Teorien forklarte ikke hvordan en medfødt fordelaktig egenskap skulle kunne bli overført fra en generasjon til den neste. En forklaring ble gitt av den østerrikske vitenskapsmannen og munken Gregor Mendel. Mendel studerte hvordan arvede egenskaper ble overført hos erter (Pisum sativum). Disse plantene har stor variasjon når det gjelder blant annet blomster, farger på frøene og plassering av blomstene på stilken. Mendel utviklet på grunnlag av sine studier lover for arv, kjent som Mendels arvelover, blant annet fant han ut at noen egenskaper er dominante og andre recessive. Han fant ut at egenskaper overføres fra foreldre til avkom via spesielle enheter, i dag kjent som gener. Genene igjen har forskjellige former, kalt alleler.[24]
Genetisk variasjon er den underliggende årsaken til forskjellige egenskaper blant organismer av samme populasjon. Slike variasjoner skjer enten ved mutasjoner eller genetiske rekombinasjon, som er en prosess der det genetiske materiale rekombineres rett før celledeling.[25] Evolusjon drives frem av genetisk variasjon i en populasjon og av ytre påkjenninger som fører til at visse gener er mer gunstige enn andre. Dermed er det individet som er best tilpasset omgivelsene, som får viderebringe sine gener gjennom mange generasjoner.[23] Blant individer er det svært stor genetisk variasjon. Disse ligger latent (klare) og kan frembringes ved seleksjon når for eksempel miljøendringer gjør det formålstjenlig.[26]
Evolusjonen har sørget for store genvariasjoner både mellom artene og innenfor populasjoner av samme art, kjent som biologisk mangfold. Mangfoldet drives frem ikke bare av genetisk variasjon og naturlig utvalg, men også av forskjellige livsvilkår og geografisk isolasjon mellom jordens verdensdeler, samt mellom fastland og øyer.[23]
Biologisk mangfold
redigerBiologisk mangfold (biodiversitet) betegner størrelsen på mangfoldet blant levende organismer. Vanligvis brukes begrepet om antallet arter, men begrepet benyttes også i sammenheng med genetisk mangfold, leveområder og nisjer (rollen en art spiller i økosystemet). Med begrepet det genetiske mangfoldet sikter en til variasjoner innen, og mellom populasjoner.[27]
Det biologiske mangfoldet varierer stort mellom forskjellige miljøer, der spesielt regnskog har stort mangfold og arktiske områder meget lite mangfold. Flere faktorer påvirker variasjonen, og et viktig forhold er hvor lenge evolusjonen har fått utvikle seg for et samfunn. Årsaken er at biologisk mangfold utvikles gjennom evolusjon over lang tid. Det fysiske miljøet er viktig, der et miljø med stor variasjon vil gi mange forskjellige nisjer. Et stabilt klima vil derimot fremme spesialisering og smale nisjer. Konkurranse mellom flere ulike arter fører også til spesialisering og smalere nisjer, dermed kan flere arter holde til i et område.[27]
Autøkologi – tilpasning til miljøet
redigerAutøkologi er studien av samspillet mellom en individuell organisme, eller en enkelt art, og de levende (biotiske) og ikke-levende (abiotiske) faktorene i miljøet. Faget er primært eksperimentelt (bygger på erfaring, altså empiri) og omhandler variabler som er enkle å måle, som lys, fuktighet og tilgjengelige næringsstoffer. Kartlegging av miljøfaktorene gjøres for å forstå organismen eller artens behov, livshistorie og oppførsel.[28]
Forskjellige mekanismer og fenomener er virksomme for en fenotype (gener- og genvarianter en organisme bærer på og som kommer til uttrykk, som størrelse, form og farge) ved tilpassing. Toleranse beskriver omfanget av omgivelsesfaktorer som et individ eller populasjon kan tåle og fremdeles overleve. Fenotyper kan tilpasse seg forandring i omgivelsene ved akklimatisering (tilvenning). Adapsjon er utvikling av egenskaper som øker sannsynligheten for overlevelse av genotypen i et habitat. Både biotiske og abiotiske faktorer kan påvirke adapsjon.[29]
Tilpasning til makro- og mikroklima
redigerKlimaet over store regioner på jorden kalles makroklima. Mikroklima er derimot klimaet innenfor en mindre lokasjon, for eksempel der en organisme holder til. Det bestemmes av makroklima, landskapet, høyde over havet, solinnstråling, vegetasjon, omgivelsenes farge og strukturer som gir le eller magasinerer varme, for eksempel en steinblokk. For en enkeltorganisme kan mikroklimaet være vel så viktig som makroklimaet.[30][31]
Graden av soleksponering, altså om et område ligger i skyggen store deler av dagen eller får direkte sol, vil i stor grad avgjøre mikroklimaet. På den nordlige halvkule vil det være forskjell på vegetasjonen i sørhellingen eller nordsiden på et fjell. Vegetasjon og farge på jordoverflaten kan også ha stor betydning. Dersom sanden på en sandstrand er sort, blir temperaturen betydelig høyere i dagslys enn om sanden er hvit. Dette får stor betydning for mikroklimaet og for hvilke organismer som trives på de forskjellige strendene. Enda et eksempel er hi som visse pattedyr graver i sanden. I hiet kan temperaturen være svært stabil, selv om temperaturen rett over hiet kan variere mye i løpet av døgnet. Årsaken er at sanden over virker isolerende.[30]
De fleste arter har et nokså lite temperaturområde hvor de yter best. Temperatur har betydning for ytelse helt ned til molekylært nivå, for eksempel for fotosyntesen og mikrobiell aktivitet (mikrobers virke). Arters tilpassing og levesteder har i stor grad sammenheng med temperatur. For eksempel har planter i arktiske områder utviklet mørke pigmenter (fargestoffer) slik at de absorberer mye sollys. I tillegg kan de orientere blader og blomster mot solen slik at de fanger opp mest mulig energi, samt andre tilpasninger som gjør at de får høyere temperatur enn luften rundt.[30]
Tilpasning til vann
redigerKroppsvæsken til alle organismer inneholder vann og forskjellige oppløste stoffer som salt og aminosyrer (byggesteiner i protein). Omfanget og lengden av røtter som forskjellige planter har, vil ofte være avhengig av tilgjengelighet av vann. Rotsystemer til ørkenplanter er gjerne svært lange, i spesielle tilfeller kan røttene til busker bli over 10 m for å komme ned til grunnvann. I ørken og steppeland kan opptil 90 % av plantenes totale biomasse bestå av rotsystemet. Til sammenligning utgjør rotsystemet til planter i temperert løvskog bare rundt 25 % av total biomasse.[32]
Mange smådyr kan ta til seg vann fra luften, men de fleste dyr på landjorden får i seg det vannet de trenger enten ved å drikke eller via føden. Dyr i områder med mye nedbør har enkel tilgang til vann, og om det oppstår tørke vil de fleste vandre for å finne vann. I ørken må derimot dyr som trenger vann holde til i nærheten av oaser, mens andre ørkendyr har tilpasset seg omgivelsene slik at de kan klare seg lenge uten vann.[32]
Kamel er et eksempel på et dyr som i særlig grad har tilpasset seg begrenset vanntilgang. Under forhold der et menneske ville dødd av vannmangel, kan kamelen være helt uten vann i seks til åtte dager. Den overlever på vannreserver i kroppsvevet og vann som kan frigjøres ved metabolisme (organismers livsnødvendige kjemiske reaksjoner i celler) fra fettet i puklene. Blant andre tilpasninger hos kamel er tykke hår som isolerer mot varmen og at den går mot solen slik at minst mulig areal av kroppen varmes opp. Når så en kamel får anledning til å drikke, kan den ta til seg en vannmengde tilsvarende 1/3 av dens kroppsmasse.[32]
Tilpasning til næringstilgang
redigerFor de fleste organismer kan tilværelsen sies å være sentrert om å skaffe nok energi og næringsstoffer til opprettholdelse av livet og å sikre etterslekten. Energien som organismer bruker til å holde seg i live, kommer fra sollys og organiske eller uorganiske molekyler.[33]
Organismer blir vanligvis klassifisert etter deres evolusjonshistorie, slik at en deler dem inn i virveldyr, insekter, orkideer og lignende. En annen klassifisering går ut på å dele organismer inn etter deres tropiske nivå, altså deres nivå i næringskjeden. Autotrofe organismer er de som benytter seg av uorganiske kilder som karbon og energi. Fotosyntetiske autotrofe organismer (planter) tar karbondioksid fra luften som karbonkilde og lys fra solen som energikilde, og syntetiserer (kjemisk reaksjon) disse til organiske stoffer. Dette innebærer at det produseres molekyler som sukker, aminosyrer og fett. Kjemosyntetiske autotrofe organismer syntetiserer organiske molekyler ved hjelp av karbondioksid og uorganiske stoffer som hydrogensulfid som energikilde. De lever ved vulkanske skorsteiner på havbunnen hvor de får varmt vann med sulfider. Heterotrofe organismer bruker organiske molekyler som kilde til både karbon og energi. De aller fleste planter er fotosyntetiske autotrofe organismer, mens alle typer sopp og dyr er heterotrofe.[33]
De heterotrofe organismene får alle sine organiske forbindelser fra karbon og energi som de autotrofe organismene har produsert. Det finnes en rekke former for næringstilførsel som de heterotrofe organismene benytter seg av. De vanligste er herbivorer, eller dyr som spiser planter (planteetere), karnivorer, eller kjøttetere, som spiser andre dyr og detrivorer, eller sedimentspisere, som lever av dødt organisk materiale, for det meste planterester.[33]
Føde er ikke noe som organismer vanligvis har tilgang til i ubegrensede mengder. Det er derfor utviklet teorier for hvordan jakten etter føde kan være optimalisert blant dyr. Om energitilgangen er begrenset, vil naturlig seleksjon ifølge evolusjonsøkologer favorisere de individer i en populasjon som er mest effektive i jakten på føde. Teorien går ut på at med begrenset energitilgang kan ikke organismer yte fullt ut innenfor alle sine livsfunksjoner. For eksempel kan de ikke både vokse og reprodusere seg, samtidig som de forsvarer seg. Det må dermed foregå kompromisser mellom forskjellige krav. For eksempel kan noen miljøer favorisere organismer som er gode på å minimere vanntap, noe som kan forklare hvordan kaktuser og skorpioner er tilpasset et liv i ørken. Planter ser ut til å prioritere vekst slik at de øker tilgangen på denne ressursen. Dermed prioriteres rotvekst fremfor nye skudd for planter i næringsrik jord, slik at de kan øke tilgangen til vann og vokse når nok næring er sikret. Motsatt vil planter i næringsfattig jord, men som har mye lys, prioritere vekst av stengel og blader for å øke energiomsetningen.[33]
Atferdsøkologi – sosial tilpasning
redigerDarwin mente at sosialt miljø, og spesielt forholdene rundt paring, kunne ha stor betydning for organismers karakteristika. Han kalte dette for sekundært kjønnskarakteristikum, og antok at de var utslag av en prosess han kalte for seksuell seleksjon. Dette går ut på at individer med spesielle egenskaper har større sjanser for å få paret seg enn andre. Blant noen arter er det sterk konkurranse mellom det ene kjønnet for å få paret seg. For eksempel kamper mellom det ene kjønnet om det motsatte kjønnets gunst, noe som gjør at de største og sterkeste individene vinner. Resultatet er ofte seleksjon som fremmer sterke kropper og effektive våpen, som kraftige horn eller tenner. Seksuell seleksjon kan blant noen arter fremme karakteristika som ikke gir slike opplagte fordeler, som karakteristiske farger (fjærprakt), ornamenter (gevirer) eller sang (fugler).[34]
Seksuell seleksjon
redigerSeksuell reproduksjon skjer blant pattedyr og fugler, mens aseksuell reproduksjon er vanlig blant mange grupper som bakterier, protozoer (en type encellede organismer), planter og noen virveldyr. Blant de fleste arter som er studert vitenskapelig finner en egenskaper som klassifiseres som enten hann- og hunnfunksjoner. Det skjer både mellom forskjellige individer eller at både hann- og hunnfunksjoner finnes i samme individ. Fra et biologisk perspektiv er forskjellen mellom kjønnene at hunner har mer kostbare gameter (kjønnsceller, for eksempel egg), mens hanner produserer flere og mindre verdifulle gameter (spermier eller pollen). Dermed er hunnenes reproduksjon noe som skjer med større kostnad (mer energikrevende) og sees vanligvis på som begrenset av ressurstilgang. Helt motsatt til dette er hannenes reproduksjon, som generelt er begrenset av tilgangen på hunner.[34]
Biologer mener at denne forskjellen i gameter har ført til en grunnleggende dikotomi (gjensidig utelukkende kategorier) mellom aktivt kurtisering som hanner foretar og at hunner er selektive (gjør valg) overfor potensielle partnere.[34]
Seksuell seleksjon fremmer spesielle trekk hos hanner. Darwin lurte på hvor mye en slik seleksjonsmekanisme kan virke før det får andre ulemper, som større dødelighet blant hanner på grunn av andre mekanismer. Han mente at seksuell seleksjon ville fremme karakteristiske trekk helt til andre mekanismer balanserer fordelen, for eksempel at hanner med stor fargeprakt blir mer utsatt for rovdyr. På den ene siden får slike hanner paret seg oftere. Denne motsetningen er forsøkt forklart med den store fargevariasjonene en kan finne blant hanner i forskjellige habitater. Forsøk har bekreftet hypotesen: En vil finne flest arter med fargerike hanner der det er få predatorer (dyr som spiser dyr) og motsatt finner en hannfugler med nøytral fjærdrakt i habitater med mange farer.[34]
Økologiske interaksjoner mellom planter er mindre opplagte enn mellom dyr, men eksperimenter har vist at reproduksjon blant planter ikke nødvendigvis er tilfeldig. En spesiell villkål (Raphanus sativus) som er vanlig i California, har blitt studert inngående og noen forskere tror at planten har egenskaper som tyder på seksuell seleksjon.[34]
Sosiale dyr
redigerSpesielt avanserte relasjoner finner en blant individer av arter som lever i kolonier, flokker og stimer. I slike grupper foregår det samarbeid, som oftest ved utveksling av ressurser mellom individer eller forsvar mot angrep fra predatorer. En kaller dette for sosialisering. Blant sosiale arter kan det dreie seg om å hjelpe hverandre med stell av pels, beskytte ungdyr og blant de mest avanserte sosiale artene som maur og termitter, har en endog klassedelte samfunn. Denne avanserte formen for sosial evolusjon kalles eusosialitet. Eusosialitet kjennetegnes av at individer fra flere generasjoner lever samme, samarbeid om å stelle unge individer og inndeling av individer i sterile og reproduktive grupper (kaster).[34]
Mange individer blant sosiale arter har tilsynelatende færre muligheter til å få avkom, sammenlignet med individer blant ikke-sosiale arter. Innenfor atferdsøkologi har en studert sosiale arter inngående, fordi en skulle tro at slik oppførsel er så lite fordelaktig at individer med slike tendenser ville bli eliminert (dø). Imidlertid har for eksempel bier og maur eksistert i millioner av år, dermed antar atferdsøkologer at under visse forhold må fordelen som kolonien gir, være større enn kostnadene. Slike arter er undersøkt ved å gjennomgå regnskapet for kostnader og gevinster, for å se om fordelene er større enn ulempene.[34]
Individer av arter som hjelper til med oppfostring av andres avkom kan få fordeler ved at de øker sine egne geners sannsynlighet for å bringes videre. Selv om noen investerer tid og energi på å oppfostre andres avkom, så kan de allikevel ha genetiske likheter med dem selv som lever videre, for eksempel at de er søsken, søskenbarn, tremenninger og så videre. En annen årsak er at de som hjelper til med oppfostring av unger på sikt kan få fordeler med senere reproduksjon. Det kan være at de får kunnskaper om stell av unger som kommer til nytte senere. Et annet forhold er mangel på gode revirer, dermed kan hjelpere få mulighet til selv en gang i fremtiden å arve et godt område. Det er rundt 100 fuglearter der stell av andres avkom er vanlig, dessuten er det vanlig blant pattedyr som ulv, villhunder, afrikanske løver, surikat og flere andre.[34]
Populasjonsøkologi
redigerEn populasjon er en gruppe individer av samme art som får avkom sammen, og som holder til innenfor et begrenset område, definert av naturlige eller menneskeskapte grenser.[36] Økologer studerer populasjonsutvikling blant annet for å lage planer for å beskytte truede arter, kontrollere skadedyrbestander og for å tilrettelegge for bærekrafttig forvaltning av fiske- og dyrebestander.[37]
I naturen vil det alltid være grenser for populasjonsvekst. Miljømotstand er kombinasjonen av alle faktorene som begrenser veksten til en populasjon. Den bestemmer til en stor del områdets økologiske bæreevne, som er definert som det maksimale antallet individer av en art et habitat (levested) kan opprettholde i lang tid. Veksten går ned når populasjonen nærmer seg antallet som definerer bæreevnen. Årsaken er at ressurser som føde, vann og frie områder reduseres. I spesielle tilfeller kan en populasjon kortvarig få et større antall individer enn områdets bæreevne. Da vil populasjonen ofte få en kraftig tilbakegang, der mange dør. Andre utfall er at noen individer kan forflytte seg eller gå over til andre føderessurser.[38]
Faktorer som regulerer bestandsstørrelser
redigerPopulasjonsstørrelsen vokser ved fødsler og immigrasjon (nye individer flytter inn), mens den reduseres ved død og emigrasjon (individer forlater populasjonen). Dessuten kan alderssammensetningen bestemme hvor raskt populasjoner vokser eller minker. En deler vanligvis en populasjon inn i individer som er for unge til å få avkom, de som er i fruktbar alder og de som er for gamle. En populasjon hvor de fruktbare individene er i flertall vil sannsynligvis komme til å vokse, mens et flertall av gamle individer betyr reduksjon.[38]
Mange forskjellige faktorer (vekstfaktorer) bestemmer bestandsstørrelser. Innenfor økologi er spesielt Liebigs minimumslov viktig. Den sier at for mye eller for lite av én faktor kan begrense eller hindre veksten til en populasjon. Det gjelder selv om alle andre faktorer er ved, eller nært, det optimale nivået. På landjorden er det ofte nedbør som er den begrensende faktoren. For mye av noe er heller ikke bra, for mye vann kan for eksempel drepe planter. På samme måte kan for høy eller lav temperatur være dødelig for både insekter, dyr og planter. Enda en begrensende faktor er populasjonstetthet, altså antall individer innenfor et bestemt areal eller volum. Parasitter og sykdommer kan spre seg lettere om tettheten av individer blir stor, dermed vil det begrense bestandsstørrelsen. Motsatt kan høy tetthet gjøre det lettere for organismer å formere seg, og dermed gi mulighet for populasjonsvekst.[39][38]
Populasjonsvekst og strategier
redigerMange populasjoner består av dyreflokker, fuglesvermer eller fiskestimer. Slike grupper har flere fordeler: Blant annet finnes ofte ressursene dyrene trenger, som vann eller føde, tilgjengelig bare på visse steder. En gruppe vil ha større mulighet for å oppdage disse stedene dersom de beveger seg sammen. Dessuten gir det beskyttelse mot predatorer at de holder sammen, mens det for en predator gir større mulighet til å jakte ned ett av individene.[38]
Reproduksjonsmønstre kan være høyst forskjellig blant arter. Mange arter får mange og ofte små avkom, som de gir liten eller ingen oppmerksomhet eller beskyttelse. Eksempler er alger, bakterier og insekter. Slike arter kommer gjerne i fruktbar alder tidlig, og en stor andel av de nye individene dør. Mange vokser likevel opp, og får i likhet med sine foreldre, en stor mengde yngel. Motsatt er det organismer som får avkom sent i livet og har et langt liv. Typisk har pattedyr denne strategien for reproduksjon, der moren er drektig lenge og ungene er store ved fødselen. Etter at ungen er født, vokser den langsomt og får mye hjelp og beskyttelse av én eller begge foreldre. Eksempler på slike dyr er elefanter, hval og mennesker. En ulempe for denne typen dyr med lang tid mellom hver generasjon og få avkom, er at de er sårbare for utryddelse. De fleste organismer har utviklet seg slik at de ligger et sted mellom disse to ytterpunktene.[38]
På liten skala er individer innenfor en populasjon vanligvis distribuert tilfeldig, jevnt eller sammenklumpet. Årsaken til slike mønstre kan være sosial samhandling, de fysiske omgivelsene eller en kombinasjon av begge. Sosiale organismer holder gjerne til mange på et sted, mens de som foretrekker et revir er mer jevnt spredd. Om resursene er konsentrert vil det typisk også være flere av samme organismen i dette området. Eksempelvis opptrer aggressive broddløse bier i jevnt distribuerte kolonier, mens kolonier av mindre aggressive arter er tilfeldig fordelt. Sammenklumpede forekomster er typisk for fugler, både når de overvintrer og hekker.[36]
På en større skala lever individer i en populasjon nært sine artsfrender. For eksempel er bestander av både trekkfugler og standfugler konsentrert på noen få steder i en region og med stor tetthet.[36]
Sjeldne arter er mer utsatt for å bli utryddet enn de mer vanlige artene. Artenes sjeldenhet kan uttrykkes som en kombinasjon av omfattende kontra begrenset geografisk utbredelse, bred kontra smal toleranse innenfor habitater, og stor eller liten populasjon. De mest tallrike artene og de minst truede, har stor geografiske utbredelse, stor habitattoleranse og høy lokal populasjonsstørrelse. De artene som har små populasjoner, begrenset utbredelse og liten habitattoleranse, er ofte de sjeldneste og mest sårbare for utryddelse.[36]
Samfunnsøkologi – samfunn og økosystemer
redigerI samfunnsøkologien er en opptatt av å studere organisering og funksjoner i biologiske samfunn. Med biologiske samfunn mener vi grupper av populasjoner av samme art, og som samspiller og holder til i et habitat (leveområde). Antall samspillende arter og kompleksiteten i deres forhold er kjent som biologisk mangfold. Strukturer oppstår i lokalsamfunn når arter samhandler, der næringskjeder, næringsvever og andre nettverk blir opprettet. Forholdene endres over lang tid (evolusjon) når arter gjensidig tilpasser seg hverandre ved koevolusjon (gjensidig evolusjonær påvirkning).[40]
Et økosystem består av alle levende organismer som finnes på et sted. Miljøet som disse organismene er omgitt av regnes også som en del av økosystemet. Et økosystem kan være meget lite, stort som en skog eller en myr, eller omfatte hele biosfæren.[41]
Et økosamfunn består av samvirkende arter innenfor et avgrenset område. Det uttrykkes også slik at et økosamfunn er de levende delene av økosystemet. Forskjellige deler av økosystemet er koblet sammen gjennom flyt av næringsstoffer og energi. Et samfunn kan være planter og dyr langs en fjellside, eller virvelløse dyr og alger i strandsonen. Innenfor samfunnsøkologien fokuserer en på grupper av arter som lever i samme miljø, ofte omtalt som livsformer. Fagfeltet dreier seg videre om hvordan miljøet påvirker strukturer i samfunnene, for eksempel utbredelse og artsmangfold.[42][43]
Komponentene og nivåene i økosystemer
redigerØkosystemer studeres ofte fra et funksjonelt synspunkt, det vil si at en i store trekk beskriver artssammensetningen gruppert etter trofiske nivåer (nivåer i næringskjeden), bestemmer biomassen i hvert nivå, energistrøm og stoffkretsløp. Funksjonelle roller i økosamfunnet, for eksempel produsent (planter), konsument (dyr), nedbrytere (bakterier og sopp) har også stor interesse. En vanlig misforståelse er at alle arter i naturen er avgjørende for økosystemers funksjon. I realiteten kan arter substituere (erstatte) hverandre i både tid og sted. Et samfunn kan derfor i mange tilfeller fungere like godt om noen arter forsvinner, dersom andre overtar samme rolle.[43]
Habitat og biotop
redigerEt habitat til en art beskriver miljøet der den vanligvis finnes. Habitatet tilfredsstiller de vilkår arten setter til omgivelsene, med hensyn til fysiske, kjemiske og biologiske forhold.[44] Størrelsen og avgrensningen av habitatet er forskjellig for hver art, det kan være en granskog, en næringsfattig myr eller høyfjell. Et habitat kan også være et lite område med avføring fra en planteeter eller en død bit av en frukt, som er habitater for henholdsvis møkkmoser og muggsopp.[45]
Biotop er et sted der et spesielt samfunn av arter finnes. Ordet brukes synonymt med lokalitetstype, som har karakteristiske plante- og dyresamfunn. Eksempler er bjørkeskog, furuskog, tundra, kornåker, gjødselhaug og høyfjell.[44][46]
Nisje
redigerArter har forskjellige funksjoner eller roller i økosystemet. Denne rollen kalles for nisje, og omfatter alt det arten er avhengig av for overlevelse og reproduksjon. Det gjelder blant annet det den spiser og hvem den blir spist av, hvor mye sollys og vann den må ha, hvor mye plass den trenger, temperaturkrav og hvordan den ellers er tilpasset. To arter som holder til i samme biotop kan ikke ha samme økologiske nisje, i så fall vil de utkonkurrere hverandre. Om to arter som har økologiske nisjer med stort overlapp vil de typisk, på grunn av konkurranse, utvikle seg slik at nisjene etterhvert får mer ulike trekk. For eksempel kan to arter som begge foretrekker samme type byttedyr, etterhvert utvikle seg slik at den ene arten velger noe større byttedyr og den andre noe mindre.[47][48] En nisje kan sies å bestå av flere miljøfaktorer, som gjør det mulig for en art å overleve og reprodusere seg.[49]
Nisjekonstruksjon
redigerNisjekonstruksjon er en prosess der organismer endrer miljøtilstanden, slik at de forandrer forholdene som de selv og andre organismer lever under. Ved å gjøre dette endres også forholdene for naturlig seleksjon i miljøet, dermed påvirkes evolusjonen.[50]
Et eksempel er bevere som bygger dammer som danner innsjøer og endrer økosystemet langs en elvebredd. Dette påvirker næringskjeden og dynamikken for nedbrytingsprosesser, og endrer vann- og materialstrømmen nedenfor dammen. I siste instans påvirker endringene plante- og dyresamfunn, samt mangfoldet i vassdraget.[51]
Generalister og spesialister
redigerArters nisje brukes til å klassifisere arter som enten generalist- eller spesialistarter. Generalister har brede nisjer og kan leve på mange ulike steder, spise mye forskjellig og tåle varierte miljøforhold. Eksempler på generalister er fluer, kakerlakker, mus, rotter og mennesker. Spesialistene derimot, har smale nisjer og kan kanskje bare leve i en type habitat. De har gjerne strenge krav til føde, tåler bare en klimatype og har ellers spesifikke krav til sitt miljø.[52]
Spesialister er spesielt utsatt for utryddelse om miljøforholdene endres. Et eksempel er den kinesiske pandaen, som er svært utsatt. Årsaker er at den har mistet mye av sitt habitat, den føder få unger gjennom livet og har en diett basert på bambusskudd.[52]
Påvirkning mellom arter
redigerPåvirkning mellom organismer, både mellom samme art og mellom forskjellige arter, er en viktig gren innenfor økologien. Når to organismer påvirker hverandre, er det tre mulige utfall for hver av dem: positiv, negativ eller nøytral. Negativ påvirkning vil si at energi brukes eller at skader oppstår. For eksempel at en mus spises av et rovdyr, eller mindre alvorlig som at en mus må bevege seg lenger for å lete etter næring, fordi en annen mus har spist all føde i nærheten.[53]
Når populasjoner av arter har interaksjon over lang tid, hender det ofte at genvariasjonen til den ene arten påvirker den andre artens utvikling og dens gener. Slik kan begge artene bli mer konkurransedyktige eller motsatt, at konkurransen blir mindre eller forsvinner. Dette kalles koevolusjon. [54]
Predasjon (+ / −)
redigerPredasjon betyr at en art (predator eller jeger) spiser en annen art (bytte). Forskjellige strategier innenfor predasjon benyttes. Rovdyr som spiser mobile byttedyr kan enten jakte eller overraske dyrene de spiser. For eksempel jakter ulv i flokk etter byttet, mens mange rovfugler kan se smågnagere på langt hold før de angriper overraskende. Kamuflasje er også en strategi som blant annet fjellreven benytter. Byttedyr på sin side har utviklet strategier for å unnslippe, blant annet ved å løpe, svømme eller fly fort vekk, ved at de har gode sanser som syn, hørsel eller luktesans. Andre strategier er solid kapsling (skilpadde), skarpe pigger (piggsvin og rosetrær), kamuflasje (mange fuglearter), stygg smak, stygg lukt (stinkdyr) eller de kan forhindre angriperens sikt (blekksprut).[54]
Herbivori (+ / −)
redigerHerbivori vil si at et dyr spiser planter (planteeter). Eksempler på herbivorer er harer, sniler og sommerfugler, og større dyr som hester, kuer og elefanter. Blant dinosaurene var mange arter herbivorer.[55]
Parasittisme (+ / −)
redigerParasittisme vil si at en art (parasitt) har spesialisert seg på å få næring fra en annen (vert). Vanligvis er parasitten mye mindre enn verten, og den kan derfor leve utenpå eller inne i vertsdyret. Parasitten får på denne måten nytte av verten, som blir svekket og kanskje dør etter en tid. Noen parasitter kan leve på mange vertsdyr, for eksempel flått, mens andre som bendelorm, lever hele sitt voksne liv i kun ett vertsdyr.[54]
Mutualisme (+ / +)
redigerMutualisme er når to arter har gjensidig nytte av hverandre. Nytten er ikke et samarbeid, men en interaksjon uten intensjon og som begge har nytte av. Eksempler er bier og andre insekter som pollinerer (befrukter) planter, der nytten for insektene er føde og beskyttelse. Et annet eksempel er bakterier som lever i tarmkanalen hos dyr. Bakteriene bryter ned næring (fordøyelse) som er til nytte for verten, mens bakteriene får et beskyttet oppholdssted og næring.[54]
Begrepet symbiose brukes ofte likeverdig med ordet mutualisme. En snakker om obligat symbiose om avhengigheten er så sterk at den ene arten vanskelig kan leve uten den andre. Motsatt har en fakultativ symbiose. Begrepet symbiose kan også brukes om samliv der ingen (kommensalisme), eller bare den ene av artene har nytte av forbindelsen (parasittisme).[57]
Kommensialisme (+ / 0)
redigerKommensialisme er en type interaksjon som gir nytte til den ene organismen, men ikke for den andre. Den som er vert har knapt noe utbytte, men heller ikke ulemper. Et eksempel er slyngplanter som fester seg på andre planter. Slyngplanten får en solid grein å vokse på, den kommer høyt opp, får lys, fuktighet og næring. Treet derimot har ingen nytte av slyngplanter. Et annet eksempel er fugler som bygger reder i trær, noe som gir fuglene stor nytte, men påvirker vanligvis trærne lite.[54]
Konkurranse (− / −)
redigerDen mest vanlige formen for konkurranse er interspesifikk konkurranse, som går ut på at to eller flere arter konkurrerer om de samme ressursene, som for eksempel føde, vann, lys og plass. Av og til må arter kjempe om slike ressurser, men det vanligste er at de forbedrer sin ressursutnyttelse i forhold til konkurrentene. Når to arter konkurrerer, sier en at deres nisjer overlapper hverandre. Jo større overlapping som forekommer, desto større er konkurransen. Om en art lykkes med å overta én eller flere grunnleggende ressurser, må de konkurrerende artene flytte til et annet område, få nye fødevaner eller endre oppførsel ved naturlig utvalg slik at nisjen endres eller reduseres. Andre mulige utfall er redusert bestand eller lokal utryddelse.[54][53]
Et eksempel på interspesifikk konkurranse er en løve og en hyene som kjemper om å spise et død dyr. Uansett hvem av dem som vinner, vil begge dyrene tapen energi og utsettes for risiko for å bli skadet. En annen form for konkurranse er interferens konkurranse, der individer fra forskjellige arter kjemper om territorium. Enda en vanlig konkurranse er intraspesifikk konkurranse, som skjer mellom individer av samme art.[58]
Amensalisme (− / 0)
redigerAmensalisme opptrer der innvirkningen mellom organismer er at den ene skades og den andre er upåvirket, eller der kostnaden for den ene organismen er meget liten. Et eksempel på dette er asymmetrisk konkurranse, som er tilfelle der en organisme slipper ut giftstoffer som skader eller tar liv av andre.[53]
Nøytralisme (0 / 0)
redigerEt eksempel er to insektarter som lever på den samme planten, selv om de er nært hverandre bruker de forskjellige deler av planten, og har derfor ikke noen innvirkning på hverandre.[53]
Systemøkologi – produksjon og energistrømmer
redigerSystemøkologi dreier seg om økosystemers oppbygning og funksjon. Samfunns- og systemøkologi inngår tett i hverandre. En kan skille samfunnsøkologi fra systemøkologi ved at systemøkologien er fokusert på hvordan økosystemer påvirkes av de livløse (abiotiske) faktorene i miljøet. I praksis er det ikke mulig å studere et biologisk samfunn uten å ta hensyn til både miljøet og samfunnsøkologi.[3] I systemøkologi er en ikke opptatt av arter, men av størrelser som biomasse, energiflyt og næringskjeder.[2] Spesielt er en opptatt av menneskelig påvirkning av økosystemer, som kan føre til endring av kretsløpene for næringsstoffer, vann og så videre.[59]
Energi er nødvendig for alt levende, og solen gir jorden stadig tilførsel av energi i form av sollys. Solstrålingen blir omformet til kjemisk energi og varme ved fotosyntese og andre cellulære prosesser.[44] I fotosyntesen omgjøres ca 1 % av solenergien som faller på plantenes blader til organiske energirike molekyler som glukose (druesukker). Til denne prosessen brukes også karbondioksid og vann. Glukose er planters kjemiske energilagre som de bruker til sine livsprosesser.[60]
Produsenter og konsumenter
redigerProdusenter er planter og andre organismer som gjør bruk av fotosyntese for å omgjøre energien fra solen og gjøre den tilgjengelig for alle andre livsformer. Dette kalles primærproduksjon. På landjorden er de fleste produsenter enten trær eller planter. I ferskvann og i havet er produsentene alger og vannplanter som holder til nær kysten. Dyr og sopp kan ikke få energi direkte fra solen, dermed er de helt avhengig av energiomsetningen som skjer i plantene. Alle organismer som får sin energi ved å spise andre organismer, enten produsenter eller andre konsumenter, levende eller døde, kalles konsumenter.[12][60]
Konsumentene deles inn i primær-, sekundær og tertiærkonsumenter. Primærkonsumentene kalles også planteetere eller herbivorer, og spiser for det meste grønne planter. Eksempler på planteetere er biller, sjiraffer og dyreplankton. Kjøttetere spiser hovedsakelig kjøttet til andre organismer. Sekundærkonsumentene er kjøttetere som spiser planteetere, eksempler på slike er edderkopper, løver og de fleste små fisk. Tertiærkonsumentene, eller toppkonsumenter, spiser andre kjøttetere. Eksempler er tiger, hauk og spekkhogger. En spesiell type konsumenter er omnivorer, eller altetere, som spiser både planter og andre dyr. Til denne gruppen hører rotter, griser og mennesker.[60]
Saprotrofer, eller nedbrytere, er de konsumentene som får sin næring fra døde planter eller dyr. Næringen føres dermed tilbake til jord, vann og luft, slik at produsentene igjen kan bruke næringen. De fleste nedbrytere er bakterier og sopper. Enda en gruppe konsumenter er detrivorer, eller sedimentspisere, som eter rester av døde dyr og organismer (detritus). Eksempler på slike er meitemarker, en del insekter og gribber.[60] Så har en dyr som spiser andre døde dyr, disse kalles åtseletere. En del insekter, særlig biller og fluer, krepsdyr og snegler er åtseletere. Mange rovdyr spiser også døde dyr, men ingen av dem er fullstendig avhengig av denne typen føde. Et eksempel er rødrev som er predator, men som også kan spise åtsler.[61]
Næringskjeder og -vever
redigerEn næringskjede er en serie organismer eller arter, der hver av dem spiser arten under i næringskjeden, og selv blir spist av arten som er over i kjeden.[62][63] Den kjemiske energien som er lagret som næringsstoffer i levende og døde organismer overføres på denne måten, fra ett nivå til et annet. Et eksempel på dette er en plante som omdanner sollys og næringsstoffer til kjemisk energi i bladene sine. Bladene spises av en larve, som blir spist av en hare, som til sist blir spist av en hauk. Nedbrytere og detrivorer spiser det som måtte være igjen som rester etter alle disse organismene, for eksempel biter av blader, avføring og døde dyr. Alle næringsstoffene fra disse og andre organismer ender til slutt tilbake i jorden.[63]
Hvert av leddene i næringskjeden kalles for trofiske nivåer, grovt delt inn i produsenter og konsumenter.[1] I økosystemer vil i praksis de fleste konsumenter spise mer enn bare en type organisme. De fleste organismer er igjen næring til, eller blir nedbrutt, av mer enn én konsument. Dermed danner organismene i et økosystem et komplisert nettverk av mange sammenkoblede næringskjeder, kjent som næringsvever.[63] I et samfunn som består av mange arter som samvirker, angir næringsveven relasjoner mellom føderelasjonene (hvem som spiser hvem).[64]
Inndelingen av trofiske nivåer vil være slik at produsentene er første trofiske nivå, primærkonsumentene er andre nivå, sekunderkonsumentene er tredje nivå og tertiærkonsumentene utgjør det fjerde nivået.[63]
Energistrøm
redigerI hvert trofiske nivå er det en viss mengde biomasse, som er massen av alt organisk materiale. I næringskjeder og -vever vil den kjemiske energien lagret i organismene overføres fra et trofisk nivå til det neste. Fra det ene leddet til det andre vil en del energi tapes til omgivelsene som varme. Dermed vil den kjemiske energien reduseres stadig mer etter som den strømmer gjennom økosystemene. Dessuten vil stadig mer tapes desto flere trofiske nivåer en næringskjede eller -vev har.[63] Årsaker til energitapene er blant annet organismenes aktiviteter som krever energi, som respirasjon (ånding), stort energiforbruk ved løping eller flyvning eller når et dyrs kroppstemperatur er høyere enn omgivelsenes temperatur. Enda et energitap skjer når dyr kvitter seg med ekskrementer (avføring) og urin.[65] En måte å fremstille dette på er ved hjelp av en næringspyramide, som viser hvor mye energi eller biomasse hvert av leddene i en næringskjede representerer.
Tapene mellom hvert trofisk nivå kan typisk være 90 %. Dermed kan det ofte ikke være mer enn fire eller fem nivåer i en næringskjede eller -vev. Dette forklarer hvorfor det kan være relativt få tigre i en regnskog, men svært mange flere insekter.[63][66]
Hvor stor masse et økosystem kan produsere av levende organisk materiale, altså biomasse, er avhengig av mengden sollys produsentene kan oppta og lagre som kjemisk energi, samt hvor effektivt energiomformingen kan skje. En tropisk regnskog er et eksempel på et økosystem der denne produksjonen er svært høy.[63]
Stoffkretsløpene
redigerDyr og planter får sin energi fra solen, men de stoffene som de trenger får de fra jorden. Levende organismer er bygget opp av tilsammen 30–40 grunnstoffer som inngår i kjemiske forbindelser, som finnes i stein, jord, vann og luft. Spesielt er det mye av grunnstoffene oksygen, karbon og hydrogen i organismer. Stoffstrømmene i næringskjeder og -vever er forsyningsveier av livsviktige stoffer for levende organismer, og fra planter og dyr blir stoffene resirkulert og brukt på nytt. Nedbryting i næringskjedene sørger for at de organiske forbindelsene spaltes til enklere stoffer som produsentene kan anvende for å bygge opp nytt organisk materiale.[67]
Grunnstoffene som inngår i kretsløpene finnes i store lagre i den ikke-levende naturen. Av disse er det bare en meget liten del som går inn i kretsløpene i økosystemene. Mange av stoffene finnes i små mengder på jorden eller i en slik form at de ikke så lett kan gå inn i kretsløpene. Stoffkretsløpene er dermed ikke fullstendige.[67] En viktig forskjell mellom stoffkretsløpene og energistrømmene i naturen, er at næring går i kretsløp, mens energi kun strømmer én vei og går over til termisk energi, istedenfor å kunne gjenbrukes på nytt av plantene.[68]
Suksesjon
redigerSuksesjon er endringer som skjer i et plante- eller dyresamfunn etter forstyrrelser, eller etter at det er dannet nytt substrat (underlag på bakken). Primær suksesjon oppstår på grunn (bakke) som nylig er blitt avdekket, for eksempel etter at en isbre har trukket seg tilbake. Sekunder suksesjon oppstår i området der forstyrrelser har ødelagt et samfunn, men der jordsmonnet er intakt. Suksesjon gjennomløper flere stadier, der klimaksfasen (biomassen på sitt maksimum) er den endelige. I klimaksfasen er populasjonene stabile over en periode, frem til en forstyrrelse inntreffer og forårsaker nye endringer. Et område som gjennomgår suksesjon får stadig økende artsrikdom og endret artssammensetning.[69]
Stabilitet
redigerØkologisk stabilitet defineres som et økosystems- eller samfunns evne til å motvirke en forstyrrelse. Et samfunn som er stabilt kan skyldes at det ikke utsettes for forstyrrelser eller at dets resiliens er stor. Resiliens er evnen et samfunnet eller økosystem har til å gå tilbake til den struktur og funksjon det hadde før forstyrrelsen.[69]
Begrepet økologisk vippepunkt brukes også for tilfeller der et økosystem ikke går tilbake til tidligere stabil tilstand etter en forstyrrelse. Det er en kritisk overgangsfase hvor et økosystem kommer ut av opprinnelige form og tipper over i et helt annet stabilt stadium (regimeskifte). Et eksempel er ørkenspredning. Skog og annen vegetasjon i en tropisk skog skaper sitt eget klima, ved at den store fordampningen av vann fra området gjør at skogen lager sin egen nedbør. Det er et selvforsterkende system. Dersom skogen fjernes over større områder vil økosystemet kunne nå et kritisk vippepunkt, der nedbøren minker og det dannes ørken.[70] En sier at økologiske systemer kan ha ikke-lineær oppførsel, hvilket vil si at årsak og virkning er disproporsjonale slik at små endringer av kritiske variabler kan gi store og i noen tilfeller irreversible endringer av systemet (endringer som ikke går tilbake til utgangspunktet).[71]
Økologi på større skalaer
redigerInnenfor noen deler av økologifaget ser en på økologiske problemstillinger i stor skala. Dermed er en ikke opptatt av arter, men størrelser som biomasse, energistrøm og stoffkretsløp. Ett eksempel er mengden karbon som absorberes fra atmosfæren av vegetasjon på land og planteplankton i havet ved fotosyntese. Videre hvor mye av karbonet som forbrukes av planteetere, planteetende dyr, rovdyr, og så videre opp i næringskjeden.[2]
I en utvidelse av økologifaget er en også blitt opptatt av samfunnsutviklingen i verdens land, og en taler derfor om bærekraftig utvikling. Begrepet kan defineres som en utvikling for å tilfredsstille dagens behov uten å ødelegge for fremtidige generasjoners muligheter til å få sine behov tilfredsstilt. Generelt dreier det seg om å redusere menneskelig innvirkning på naturmiljøet. På en enda større skala ønsker en å sikre både økologisk, sosial og økonomisk bærekraft, noe som er uttrykt i FNs bærekraftsmål, hvor fattigdomsbekjempelse, god helse og utdanning til alle mennesker sees på som grunnleggende.[72]
Landskapsøkologi
redigerEt landskap er et blandet område bestående av mange forskjellige økosystemer. Økosystemene i landskapet danner et lappetappe av forskjellige felter, kalt landskapselementer. Innen landskapsøkologi studerer en strukturene og prosessene i landskapet. Landskapets strukturer beskrives med parametre som størrelse, form, sammensetning, antall og posisjon av landskapselementer. For en landskapsøkolog er det viktig å kvantifisere landskapsstrukturene. Strukturen påvirker prosesser som energi- og materialstrømmer, samt arter i landskapet. Landskapets struktur, spesielt størrelse, antall og isolerte habitater, kan påvirke bevegelsen til organismer mellom foretrukne habitater. Delpopulasjoner i flere mindre habitater i et landskap utgjør en metapopulasjon.[73]
Landskapets strukturer endres under påvirkning av geologiske prosesser, klima, organismer og branner. Hovedårsaken til at landskapet endres er geologiske prosesser som vulkaner, sedimentering (forflytning av masser som sand på grunn av vind, vann eller is) og klimavariasjoner. Et annet tilfelle er arealbruksendringer (endring av områder for jordbruk, veibygging og lignende) som bidrar til å endre blant annet landskap og vegetasjon.[73]
Geografisk økologi eller biogeografi
redigerGeografisk økologi dreier seg om storskala mønstre for utbredelse av arter og biodiversitet. Innenfor fagfeltet finnes spesialiserte fagområder som øybiogeografi (øyteori), studier av artsutbredelse bestemt av breddegrader og storskala regionale historiske prosesser som har påvirket mangfoldet.[74]
På øyer er artsrikdommen økende med arealet, men reduseres desto lenger fra fastlandet den ligger. Motsatt øker artsrikdommen desto nærmere ekvator en øy ligger. Habitater på landjorden kan også være så isolert at de mest av alt kan betraktes som øyer. Særlig gjelder dette habitater i fjellområder som kan betraktes som øyer, og på samme måte som øyer til havs, er artsrikdommen størst der arealet er stort og minker etter hvor isolert lokasjonen er. En kan også betrakte habitatet i en innsjø som en øy, fordi de er isolert fra andre vannbaserte habitater på land. Vanligvis øker antallet fiskearter desto større innsjøen er og reduseres med graden av isolasjon. Dog kan disse sammenhengene variere for forskjellige arter. For noen organismer kan en øy være helt isolert, mens den for andre er enkelt å komme til.[74]
Humanøkologi
redigerHumanøkologi er analyse av mennesker der tradisjonelle metoder brukt for å analysere planter og dyr i økologien anvendes.[75] Faget er tverrfaglig og befatter seg med problemstillinger relatert til genetisk, fysiologisk og sosial tilpasning til miljøet og miljøendringer. Her inngår sosiale, kulturelle og psykologiske faktorer i vedlikehold eller forstyrrelse av økosystemer. Effekter av befolkningstetthet på helse, sosial organisering eller miljøkvalitet studeres, samt forbindelser mellom teknologi- og miljøendringer. Faget forsøker å utvikle samlende prinsipper i studiet av biologisk og kulturell tilpasning.[76]
Global økologi
redigerJordens atmosfære gjør biosfæren til et gunstig sted for livet på jorden. Den reduserer mengden ultrafiolett stråling som når jorden og sørger for stabilt, varmt klima på grunn av naturlig drivhuseffekt. Atmosfærens innhold av blant annet vanndamp, metan, ozon, nitrogenoksid og karbondioksid sørger for at jorden er varmere enn den ellers ville ha vært.[77] Global økologi dreier seg om denne typen problemstillinger, altså jordens økosystem.
Menneskenes aktivitet har endret på flere av jordens stoffkretsløp. Blant annet nitrogenkretsløpet, som kan true biodiversitet på grunn av store konsentrasjoner visse steder. Årsaken er at nitrogen kan gi fordeler for noen arter på bekostning av andre. En annen påvirkning er endring av atmosfærens gassammensetning, som utslipp av karbondioksid fra forbruk av fossilt brensel som olje, gass og kull. Dette er en klimagass som øker den naturlige drivhuseffekten, og gir global oppvarming. Menneskeskapt klimaendring og reduksjon av biologisk mangfold omtales som den sjette masseutryddelse. Fordi endringene har geologiske proporsjoner, mener forskerne at en bør kalle tidsalderen jorden er inne i for antropocen. Det forventes at disse endringene på sikt vil få alvorlig betydning for verdens befolkning, økonomiske systemer og infrastruktur.[77]
Metoder innenfor økologien
redigerØkologer studerer systemer med levende organismer, noe som gir spesielle utfordringer. Det er svært mange variabler, og for å måle disse må vitenskapelige teknikker kjent fra fysikken, kjemien og ingeniørvitenskapen modifiseres før de kan benyttes. Anvendelsene blir ikke like enkle, dessuten heller ikke så nøyaktige som i andre vitenskaper. Om en fysiker vil måle varmeavgivelse fra et objekt, så kan parametere som ledningsevne, ekspansjon og overflateegenskaper enkelt bestemmes, og brukes til å beskrive hvordan energiavgivelsen skjer. Derimot vil en økolog som vil forsøke å måle et dyrs varmeavgivelse til omgivelsene stå ovenfor mange variabler som er vanskelige å bestemme, i tillegg vil datamengden kunne bli stor og vanskelig å analysere.[2]
Til tross for disse mer komplekse problemstillingene kan også naturmiljøet beskrives ved fysiske og kjemiske metoder, som kjemiske analyser, fysiske målinger og bruk av forskjellige mekaniske apparater. Statistiske metoder brukes i stort omfang. På grunn av store vansker med å kontrollere miljøvariabler i feltet, er eksperimentelle studier i stor grad noe som gjøres i laboratorier. En gjør imidlertid også kontrollerte feltforsøk, men da undersøkes ofte bare innvirkningen av noen få variabler av gangen. Statistiske og matematiske modeller basert på data innhentet fra feltstudier kan også gi større forståelse for dynamikken i ulike naturmiljøer.[2]
Klimakammer brukes i eksperimenter med planter og dyr, der lys, temperatur og fuktighet kan styres nøyaktig. Dermed kan effekten av hver variabel på organismene studeres. Elektronisk sporingsutstyr brukes til å studere bevegelse og oppførsel til dyr og fugler i naturen. Radioisotoper brukes til å spore næringsstoffene gjennom økosystemer, slik at overføring av energi og næringsstoffer gjennom komponentene i økosystemet kan undersøkes og næringskjeder kartlegges.[2]
Økologiens historie
redigerOrdet økologi ble skapt i 1866 av den tyske zoologen og filosofen Ernst Haeckel (Ökologie). Økologiske tanker er avledet av etablerte strømninger i filosofi, særlig fra etikk og politikk.[78] Oldtidens greske filosofer som Hippokrates og Aristoteles la grunnlaget for økologi i sine studier av naturhistorie. Moderne økologi ble en mye mer omfattende vitenskap på slutten av 1800-tallet. Begreper om evolusjon i forbindelse med tilpasning og naturlig utvalg var grunnlaget for moderne økologisk teori.
Oldtiden
redigerOpprinnelsen til økologi er omfattende, noe som i stor grad skyldes fagets tverrfaglige natur. Oldtidens greske filosofer som Hippokrates og Aristoteles var blant de første til å gjøre observasjoner innenfor naturhistorie. Imidlertid så de på livet med en essensialistisk innfallsvinkel, hvor arter var statisk uforanderlige størrelser og varianter ble sett på som avvik av en idealisert type. Dette står i kontrast til den moderne forståelse innenfor økologisk teori der varianter er sett på som virkelige fenomener av interesse og har en viktig rolle ved tilpasning drevet av naturlig utvalg.[80][81]
Tidlige oppfatninger av økologi, for eksempel balanse og regulering i naturen, kan spores tilbake til Herodot, som var blant de første til å beskrive mutualisme i observasjonen av «naturlige tannbehandling». Han så at nilkrokodiller som lå på elvebredden hadde åpen munn og at dette ga sniper muligheten til å pirke igler ut av tennene deres. Herodot bemerket at det ga næring til snipene og munnhygiene for krokodillene.[82] Aristoteles hadde tidlig innflytelse på den filosofiske utvikling innenfor økologi. Han og hans elev Theofrastos gjorde mange observasjoner av migrasjon (forflytning) blant planter og dyr, biogeografi (utbredelse), fysiologi og atferd, noe som tyder på en tidlig analogi til det moderne begrepet økologisk nisje.[83][84] Theofrastos’ arbeid tyder også på at han var den første som gjorde omfattende arbeid innenfor klassifisering av planter.[82]
Under Qin-dynastiet (rundt 200 år før Kristus) i det gamle Kina ble verdens tidligste kjente miljøvernlover vedtatt. Det ble utformet lover som forbød eller begrenset hugging av trær, brenning av gress og plukking av spirende planter, jakt på unge dyr og fugler, bruk av gift, feller eller garn for å fange fisk og vilt.[82]
Den arabiske forfatteren Al-Jahiz (født i år 776) gir den første beskrivelsen av en næringskjede, og sier at «Alle dyr, kort sagt, kan ikke eksistere uten føde, og heller ikke kan jaktdyret unnslippe å bli jaktet i sin tur». Han betraktes også som en av de første som beskriver betydningen av miljøfaktorer på dyrelivet.[85]
Utvikling i nyere tid
redigerØkologiske begreper som næringskjeder, populasjonsregulering og produktivitet ble først utviklet på 1700-tallet, og oppdagelsene ble publisert av den nederlandske vitenskapsmannen Anton van Leeuwenhoek og botanikeren Richard Bradley.[86]
Carl von Linné revurderte i 1764 sin tidligere tro på at artene er uforanderlige, spesielt la han merke til at det oppstår hybrider av visse planter. Han drøftet dette og mente at Gud må ha skapt bare et begrenset antall arter, som senere har dannet hybrider slik at det har oppstått et stort antall arter på jorden.[87] I 1775 kom Linné opp med et konsept om balanse i naturen: «For å videreføre den etablerte naturforløpet i en kontinuerlig serie, har den guddommelige visdom bestemt at alle levende skapninger hele tiden skal være opptatt med å føde nye individer, at alle naturlige ting skal bidra og gi en hjelpende hånd for å bevare alle arter, og til slutt at død og ødeleggelse av en ting alltid bør være underordnet restitusjonen av en annen.»[88]
Den tyske biogeografen Alexander von Humboldt var en tidlig pioner innenfor økologisk tenkning. På begynnelsen av 1800-tallet var han blant de første til å beskrive en sammenheng mellom breddegrader og distribusjon av arter (fra ekvator mot polene).[89] Han beskrev mer enn 60 000 tropiske planter, og prøvde å beskrive sine funn som en forent vitenskap som forklarer alle naturfenomener. Dette gir grunnlaget for moderne holistiske (helhetlig) tilnærming til beskrivelse av jordens miljøsystem.[88]
I 1809 kom den franske vitenskapsmannen og zoologen Jean-Baptiste de Lamarck opp med en teori som holdes for å være den første moderne og komplette teorien om evolusjon. Han mente at komplekse organismer som pattedyr har utviklet seg fra enklere livsformer, videre at oppførsel til organismer vil få ubrukte kroppsdeler til å forfalle eller nye deler vil utvikle seg, alt etter hva som er nyttig for artens overlevelse. Dette mente han skjer i en organismes livstid og at de gunstige egenskapene overføres til neste generasjon avkom.[88]
Den tyske legen og fysikeren Hermann von Helmholtz fastslo i 1847 at energimengden i universet er konstant, og at energi verken kan skapes eller ødelegges, bare omformes fra en form til en annen. Dette ble kjent som termodynamikkens første hovedsetning, og sammen med den andre loven, ble disse lovmessighetene grunnleggende for økologiens forståelse av energiomforming.[90] I moderne økologi er dette kjent som bioenergetikk, som omhandler hvordan organismer omformer energien de trenger for å holde livsprosessene i gang.[91]
Den engelske naturforskeren Charles Darwin utgav i 1859 boken On the Origin of Species (Artenes opprinnelse) der hans evolusjonsteori om naturlig utvalg blir beskrevet og danner grunnlaget for en ny gren innenfor biologien.[90]
Begrepet økologi (tysk: Oekologie, Ökologie) ble skapt av den tyske biologien Ernst Haeckel i boken Generelle Morphologie der Organismen i 1866.[92][93] Den danske botanikeren Eugen Warming publiserte boken Plantesamfund: Grundtræk af den økologiske Plantegeografi, den første grundige lærebok om planteøkologi i 1895. Boken beskriver plantesamfunn over hele verden i sammenheng med miljøfaktorene som påvirker dem.[94]
Etter 1900
redigerPå begynnelsen av 1900-tallet utviklet økologi seg fra å være et beskrivende fag innen naturhistorie, til å bli et mer analytisk fag i vitenskapelig naturhistorie.[95]
Den amerikanske planteøkologen Frederic Clements gjorde i 1916 rede for sin ide om plantesamfunn som en superorganisme. Teorien har sammenheng med suksesjon for planter. Han tenkte seg et samfunn som en superorganisme, der komponentene er gjensidig avhengige, både i nåtid og i deres felles evolusjonære historie. Fellesskap fungerer som en integrert enhet, med interaksjoner mellom planter, dyr, mikroorganismer og så videre.[96] Dette ble utviklet videre i 1926 av den russiske forskeren Vladimir Vernadskij (1863–1945) som samme år utviklet begrepet biosfære. Han påpekte tendensen til at menneskelig aktivitet påvirker denne. Han sier at at alle organismer på jorden «er uatskillelig og kontinuerlig sammenkoblet med sitt materielle energiske miljø, først og fremst via næringsinntak og pust». Vernadskij beskriver hvordan oksygen, nitrogen og karbondioksid i jordens atmosfære er et resultat av livsprosessene.[97]
Den amerikanske økologen og taksonomen Henry A. Gleason presenterte i 1926 et alternativ til konseptet om en superorganisme. Han hevdet at et samfunn ikke er en organisk enhet, men heller «bare er resultatet av to faktorer, den varierende og tilfeldig innvandring av planter og et like svingende og variabelt miljø [...] ikke en organisme, knapt en enhet med vegetasjon, men snarere bare en tilfeldighet».[98] Gleason mente at økologiske samfunn utvikler seg fra den unike og tilfeldige foreningen av individuelle organismer. Fokuset ble dermed rettet mot individuelle organismers livshistorie og hvordan de forholder seg til utviklingen i samfunnet.[99]
Den engelske økologen Charles Sutherland Elton publiserte boken Animal Ecology i 1927, der han beskrev viktigheten av næringsrelasjoner (energi) mellom organismer som grunnlag for å forstå naturen. Elton beskrev at en nisje for en art er «dens plass i det biotiske miljøet, dens forhold til føde og fiender».[97]
Clements og Victor Ernest Shelford (også en amerikanske økolog) samarbeidet om noe de kalte «bioøkologi» i 1939, der plante- og dyreøkologi presenteres som et sammenhengende hele. De argumenterte for viktigheten av interaksjoner mellom planter og dyr innenfor det Clements refererte til som biomet, som er definert som «en organisk enhet bestående av alle arter av planter og dyr i deres hjem i et bestemt habitat».[100] Elton definerte økologiske relasjoner ved hjelp av begreper som næringskjeder og næringsvever, og beskrev kvantitativt (med tall) forholdet mellom ulike grupper og deres relative mangfold.[101]
I 1942 utga den amerikanske økologen Raymond Lindeman (1915–1942) artikkelen The Trophic Dynamic Aspect of Ecology. Lindeman klassifiserte organismer i trofiske nivåer og beskrev energien som flyter mellom disse nivåene.[100] Trofisk dynamikk ble grunnlaget for senere arbeid for å følge energistrømmer og næringssykluser gjennom økosystemer. Den amerikanske økologen Robert MacArthur anvendte avansert matematisk teori, prediksjoner og tester i 1950-årene, som inspirerte senere økologer til å anvende avansert matematikk innenfor økologi.[102][103]
Økologi fikk økt popularitet og vitenskapelig interesse i løpet av 1960- og 1970-årene som en viktig del av miljøbevegelsen. Det er sterke historiske og vitenskapelige bånd mellom økologi, naturforvaltning og -vern.[104]
I 1962 ble boken til den amerikanske marinbiologen og økologen Rachel Carson, Den tause våren et viktig bidrag til å mobilisere miljøbevegelsen ved å advare mot giftige plantevernmidler, for eksempel DDT, som akkumuleres i miljøet. Carson brukte den økologiske vitenskapen til å knytte utslipp av miljøgifter til mennesket og tilstanden til økosystemer. Siden da har økologer arbeidet for å bygge bro mellom deres forståelse av ødeleggelsen av jordens økosystemer med miljø-, politikk-, lov -, rehabiliterings- og naturressursforvaltning.[105][95][106]
Se også
redigerReferanser
rediger- ^ a b Miller & Spoolman 2015, s. 54.
- ^ a b c d e f g h i j k l m n o Pimm , Stuart L. og Smith, Robert Leo (7. februar 2019). «Ecology». Encyclopædia Britannica, inc. Besøkt 28. juni 2020.
- ^ a b c d e Semb-Johansson, Arne; Hjermann, Dag Øystein og Ratikainen Irja Ida: (no) «Økologi » i Store norske leksikon
- ^ Sannum, Maja Margaret: (no) «Koevolusjon» i Store norske leksikon
- ^ Steward T.A. Pickett; Jurek Kolasa; Clive G. Jones (1950). Ecological Understanding: The Nature of Theory and the Theory of Nature. San Diego: Academic Press. ISBN 978-0-12-554720-8.
- ^ Brown J.H. & Maurer B.A. (3. mars 1989). «Macroecology: the division of food and space among species on continents». Science. 243: 1145–1150. doi:10.1126/science.243.4895.1145.
- ^ Hjermann, Dag Øystein: (no) «Humanøkologi » i Store norske leksikon
- ^ Forman, R.T.T. (2008). Urban regions: ecology and planning beyond the city (PDF). Cambridge: Cambridge University Press. ISBN 0521670764. Arkivert fra originalen (PDF) 8. juni 2016. Besøkt 26. september 2016.
- ^ Miller & Spoolman 2015, s. 54–55.
- ^ Molles & Sher 2019, s. 11.
- ^ «Biom». Botanisk- og plantefysiologisk leksikon. Universitetet i Oslo – Institutt for biovitenskap. 4. februar 2011. Besøkt 3. juli 2020.
- ^ a b c d Molles & Sher 2019, s. 12–14.
- ^ a b Molles & Sher 2019, s. 17–19.
- ^ Molles & Sher 2019, s. 14–16.
- ^ Molles & Sher 2019, s. 51.
- ^ a b Molles & Sher 2019, s. 49–54.
- ^ a b c Molles & Sher 2019, s. 44–47.
- ^ Molles & Sher 2019, s. 54–73.
- ^ Molles & Sher 2019, s. 54–57.
- ^ Voje, Kjetil Lysne: (no) «Evolusjon» i Store norske leksikon
- ^ Voje, Kjetil Lysne & Helsem, Stian Aleksander: (no) «Naturlig utvalg» i Store norske leksikon
- ^ Molles & Sher 2019, s. 178–198.
- ^ a b c Taksdal 1996, s. 36–38.
- ^ Molles & Sher 2019, s. 78–98.
- ^ «How are gene mutations involved in evolution?». National Library of Medicine. 28. juli 2020. Besøkt 28. juli 2020.
- ^ Fimreite 1997, s. 69.
- ^ a b Ratikainen, Irja Ida: (no) «Biologisk mangfold» i Store norske leksikon
- ^ «Autecology». Encyclopædia Britannica, inc. 20. juli 1998. Besøkt 12. september 2020.
- ^ «Økologi». Botanisk- og plantefysiologisk leksikon. Universitetet i Oslo – Institutt for biovitenskap. 4. februar 2011.
- ^ a b c Molles & Sher 2019, s. 103–125.
- ^ (no) «Mikroklima» i Store norske leksikon
- ^ a b c Molles & Sher 2019, s. 127–148.
- ^ a b c d Molles & Sher 2019, s. 149–170.
- ^ a b c d e f g h Molles & Sher 2019, s. 172–195.
- ^ Molles & Sher 2019, s. 237–239.
- ^ a b c d Molles & Sher 2019, s. 213–214.
- ^ Molles & Sher 2019, s. 197.
- ^ a b c d e Miller & Spoolman 2015, s. 111–117.
- ^ Aarnes, Halvor: (no) «Vekstfaktorer» i Store norske leksikon
- ^ Thompson, John N. (26. juli 1999). «Community ecology». Encyclopædia Britannica, inc. Besøkt 12. september 2020.
- ^ Ratikainen, Irja Ida og Semb-Johansson, Arne: (no) «Økosystem » i Store norske leksikon
- ^ Molles & Sher 2019, s. 360.
- ^ a b Fimreite 1997, s. 99–100.
- ^ a b c Fimreite 1997, s. 100.
- ^ Grundt, Hanne Hegre (17. juni 2019). «Habitat og nisje». Nasjonal digital læringsarena. Arkivert fra originalen 5. juni 2020. Besøkt 5. juni 2020.
- ^ Halleraker, Jo Halvard: (no) «Biotop» i Store norske leksikon
- ^ Taksdal 1996, s. 9.
- ^ Miller & Spoolman 2015, s. 91.
- ^ Molles & Sher 2019, s. 198.
- ^ «Niche construction». Kevin Laland and Lynn Chiu. mai 2020. Besøkt 6. juni 2020.
- ^ Naiman, Robert J; Johnston, Carol A; Kelley, James C (1988). «Alteration of North American Streams by Beaver». Bio Science. 38 (11): 753–762. JSTOR 1310784. doi:10.2307/1310784.
- ^ a b Miller & Spoolman 2015, s. 91–92.
- ^ a b c d Molles & Sher 2019, s. 275–276.
- ^ a b c d e f Miller & Spoolman 2015, s. 103–108.
- ^ Dayton, Monty (22. november 2019). «Herbivore, Omnivore and Carnivore Animals». sciencing.com. Besøkt 21. november 2020.
- ^ Eastwood, R. (2004). «Successive replacement of tending ant species at aggregations of scale insects (Hemiptera: Margarodidae and Eriococcidae) on Eucalyptus in south-east Queensland». Australian Journal of Entomology. 43: 1–4. doi:10.1111/j.1440-6055.2003.00371.x.
- ^ Lee, Aline Magdalena: (no) «Symbiose» i Store norske leksikon
- ^ Molles & Sher 2019, s. 277.
- ^ Ratikainen Irja Ida: (no) «Systemøkologi» i Store norske leksikon
- ^ a b c d Miller & Spoolman 2015, s. 54–56.
- ^ (no) «Åtseletere» i Store norske leksikon
- ^ Arne Semb-Johansson, Dag Øystein Hjermann og Aline Magdalena Lee: (no) «Næringskjede» i Store norske leksikon
- ^ a b c d e f g Miller & Spoolman 2015, s. 59–61.
- ^ Molles & Sher 2019, s. 363.
- ^ Taksdal 1996, s. 21.
- ^ Taksdal 1996, s. 22.
- ^ a b Taksdal 1996, s. 27–29.
- ^ Miller & Spoolman 2015, s. 57.
- ^ a b Molles & Sher 2019, s. 441–442.
- ^ Aarnes, Halvor: (no) «Økologisk vippepunkt » i Store norske leksikon
- ^ Levin, S. A. (1999). Fragile Dominion: Complexity and the Commons. Reading, MA: Perseus Books. ISBN 978-0-7382-0319-5.
- ^ Olerud, Kåre og Tjernshaugen, Andreas: (no) «Bærekraftig utvikling» i Store norske leksikon
- ^ a b Molles & Sher 2019, s. 463–464.
- ^ a b Molles & Sher 2019, s. 485–486.
- ^ Park, R. E. (1936). «Human ecology». American Journal of Sociology. 42 (1): 1–15. JSTOR 2768859. doi:10.1086/217327.
- ^ Editors (1972). «Introductory statement». Human Ecology. 1 (1): 1. JSTOR 4602239. doi:10.1007/BF01791277.
- ^ a b Molles & Sher 2019, s. 508–509.
- ^ International Relations Theory and Ecological Thought: Towards a Synthesis. Routledge. 2003. s. 25. ISBN 978-1-134-71068-3.
- ^ Stauffer, R. C. (1957). «Haeckel, Darwin and ecology». The Quarterly Review of Biology. 32 (2): 138–144. doi:10.1086/401754.
- ^ Benson, Keith R. (2000). «The emergence of ecology from natural history». Endeavour. 24 (2): 59–62. PMID 10969480. doi:10.1016/S0160-9327(99)01260-0.
- ^ Sober, E. (1980). «Evolution, population thinking, and essentialism». Philosophy of Science. 47 (3): 350–383. JSTOR 186950. doi:10.1086/288942.
- ^ a b c Levin 2009, s. 761.
- ^ Hughes, J. D. (1985). «Theophrastus as ecologist». Environmental Review. 9 (4): 296–306. JSTOR 3984460. doi:10.2307/3984460.
- ^ Hughes, J. D. (1975). «Ecology in ancient Greece». Inquiry. 18 (2): 115–125. doi:10.1080/00201747508601756.
- ^ Levin 2009, s. 762.
- ^ Odum, E. P.; Barrett, G. W. (2005). Fundamentals of Ecology. Brooks Cole. s. 598. ISBN 978-0-534-42066-6.
- ^ Levin 2009, s. 763.
- ^ a b c Levin 2009, s. 764.
- ^ Levin 2009, s. 386.
- ^ a b Levin 2009, s. 765.
- ^ Kristensen, Tom: (no) «Bioenergetikk» i Store norske leksikon
- ^ Haeckel, Ernst (1866). Generelle Morphologie der Organismen (på tysk). vol. 2. Berlin, (Germany): Georg Reimer. s. 286.
- ^ Levin 2009, s. 766.
- ^ Levin 2009, s. 767.
- ^ a b McIntosh, R. P. The Background of Ecology: Concept and Theory. Cambridge University Press. s. 400. ISBN 0-521-27087-1.
- ^ Levin 2009, s. 776.
- ^ a b Levin 2009, s. 768.
- ^ Levin 2009, s. 778.
- ^ Gleason, H. A. (1926). «The individualistic concept of the plant association». Bulletin of the Torrey Botanical Club. 53 (1): 7–26. doi:10.2307/2479933.
- ^ a b Levin 2009, s. 769.
- ^ Elton, C. S. (1927). Animal Ecology. London, UK.: Sidgwick and Jackson. ISBN 0-226-20639-4.
- ^ Cook, R. E. (1977). «Raymond Lindeman and the trophic-dynamic concept in ecology» (PDF). Science. 198 (4312): 22–26. Bibcode:1977Sci...198...22C. PMID 17741875. doi:10.1126/science.198.4312.22. Arkivert fra originalen (PDF) 5. oktober 2012. Besøkt 26. juli 2020.
- ^ Odum, E. P. (1968). «Energy flow in ecosystems: A historical review». American Zoologist. 8 (1): 11–18. JSTOR 3881528. doi:10.1093/icb/8.1.11.
- ^ McIntosh, R. P. The Background of Ecology: Concept and Theory. Cambridge University Press. s. 400. ISBN 0-521-27087-1.
- ^ Hammond, H. (2009). Maintaining Whole Systems on the Earth's Crown: Ecosystem-based Conservation Planning for the Boreal Forest. Slocan Park, BC: Silva Forest Foundation. s. 380. ISBN 978-0-9734779-0-0.
- ^ Palamar, C. R. (2008). «The justice of ecological restoration: Environmental history, health, ecology, and justice in the United States» (PDF). Human Ecology Review. 15 (1): 82–94.
Litteratur
rediger- Taksdal, Gudmund (1996). Økologi og miljø. Oslo: Landbruksforl. ISBN 8252921493.
- Fimreite, Norvald (1997). Innføring i økologi. Oslo: Samlaget. ISBN 8252147852.
- Miller, G. Tyler og Spoolman, Scott E. (2015). Essentials of Ecology (7 utg.). Stamford, USA: National Geographic Learning. ISBN 978-1-285-19726-5.
- Molles, Manuel C. Jr. og Simon, Anna Sher (2019). Ecology: Consepts and applications (8 utg.). New York, NY: McGraw-Hill Education. ISBN 978-1-259-88005-6.
- Levin, Simon A. m. fl. (2009). The Princeton Guide to Ecology. Princeton, New Jersey: Princeton University Press. ISBN 978 0 691 12839 9.